
LIBRARY
RESEARCH REPORTS DIVISION
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA 93940

/-NPS52-86-007

NAVAL POSTGRADUATE SCHOOL
Monterey, California

_ EXPERIENCE WITH Si (9^^%*^ '

IMPLEMENT A TION OF A
PR O TO TYPE PR O GRA MM \NG EN VIRONMEN T .

PART/IVy.

Bruce J. MacLennan

^ January 1986

Approved for public release; distribution unlimited

Prepared for:

Chief of Naval Research
Arlington, VA 22217

20091105008

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. H. Shumaker
Superintendent

D. A. Schrady
Provost

in
in z
Li
£L
X
111

h
Z
ui

2
z
c:
>
0

G
u
'J
3
Q
O
K
a.
iii
e

The work reported herein was supported by Contract from the
Office of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Reviewed by:

VINCENT Y. LI
Chairman
Department of Computer Science

Bruce J. MacLennan
Associate Professor
Computer Science

Released by:

KNEALE T. MARSHALL
Dean of Information and
Policy Science

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whin Data Entered;

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

NPS52-86-007

2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

EXPERIENCE WITH ft
IMPLEMENTATION OF A PROTOTYPE
PROGRAMMING ENVIRONMENT PART IV

5. TYPE OF REPORT 4 PERIOO COVERED

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORf«;

Bruce J. MacLennan

8. CONTRACT OR GRANT NUMBERC.)

N00014-86-WR-24092

9. PERFORMING ORGANIZATION NAME AND AOORESS

Naval Postgraduate School
Monterey, CA 93943-5100

10. PROGRAM ELEMENT. PROJECT, TASK
AREA ft WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME AND AOORESS

Chief of Naval Research
Arlington, VA 22217

12. REPORT DATE

January 1986
13. NUMBER OF PAGES

52
14. MONITORING AGENCY NAME » AODRESSCI' different from Controlling Office) 15. SECURITY CLASS, (ot thta report)

15«. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION ST ATEMEN T (at this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (ol the abstract an f red In Block 20, II different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS 'Continue on reverse eide it neceeamry and identify by block number)

20. ABSTRACT (Continue on reverse aide It neceaeary and Identity by block number)

This is the fourth report of a series exploring the use of the ft programming
notation to prototype a programming environment. This environment includes an
interpreter, unparser, syntax directed editor, command interpreter, debugger
and code generator, and supports programming in a small applicative language.
The present report extends the interpreter, unparser, syntax directed editor,
command interpreter and debugger to accommodate recursive function definition
and invocation, and completes the extension of the language into an applicative
programming system supporting higher-order functions. An implementation of

DD .\ FORM
AN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

S N 0102- LF- 014- 6601
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Sntere.u

UNCLASSIFIED
SECURITY CLASSIFICATION OP THIS PAGE (Whan Omtm Entt*di

these ideas is listed in the appendices.

S- N 0102- LF- 014- 6601
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGEfWIlan Dmla Enfrmd)

EXPERIENCE WITH U

IMPLEMENTATION OF A

PROTOTYPE PROGRAMMING ENVIRONMENT

PART IV

Bruce J. MacLennan
Computer Science Department

Naval Postgraduate School
Monterey. CA 93943

Abstract:

This is the fourth report of a series exploring the use of the Ct programming notation to prototype a
programming environment. This environment includes an interpreter, unparser, syntax directed editor,
command interpreter, debugger and code generator, and supports programming in a small applicative
language. The present report extends the interpreter, unparser, syntax directed editor, command inter-
preter and debugger to accommodate recursive function definition and invocation, and completes the
extension of the language into an applicative programming system supporting higher-order functions.
An implementation of these ideas is listed in the appendices.

1. Introduction

Our goal in this series of reports* MacLennan85b, MacLennan85c. MacLennan86] is to explore in the

context of a very simple language the use of the Q programming notation j MacLennan83,

MacLennan85ai to implement some of the tools that constitute a programming environment.

The structure of this report is as follows: First we outline the requirements for the function

definition facility. Next we define the abstract structure of function definitions and invocations. We

proceed to the dynamic structures required to support recursive, statically scoped procedures. This

leads naturally to the topic of evaluation. We finish by discussing possible debugger support for the

new facilities. As in previous reports, a running system demonstrating these ideas is listed in the

appendices.

Support (or this research was provided by the Office of Naval Research under contract N00014-86-WR-24092.

-1-

2. Goal

We want to permit the definition and invocation of statically scoped recursive functions. For exam-

ple, the following program defines factorial recursively and invokes the resulting definition with argu-

ment K = 4:

func fac n =

(if(n=0)

then 1

else (nxfac (n-1)))

let K = 4

fac K j

It's easy to see that the general form of a function definition is:

'func F N = B

For simplicity we restrict our attention to monadic functions.

3. Abstract Structure

3.1 Function Definition

The abstract structure of a function definition block is represented in a straight-forward way as a

node with four descendents, corresponding to the function name, formal parameter, function body and

block body. These are defined by the following declarations:

. FunDef (£)

E is a function definition

Degree (FunDef. 1).

• FunName (F. E)

F is the function name of E

Function (FunName, FunDef, string).

-2-

. Fun Formal (.V, E)

N is the formal of E

Function (FunFormal. FunDef, string).

. FunBody (B. E)

B is the body of E

Function (FunBody. FunDef, expr).

• FunScope (A', E)

X is the scope of E

Function (FunScope, FunDef. expr).

Note that, for convenience (and consistency with let blocks) the FunName and FunFormal attributes

are strings, rather than variable nodes. This complicates editing and is probably, in the long run. a bad

decision. The problem is solved in Part VI, where table-driven syntax-directed editing is disussed.

3.2 Function Invocation

The abstract syntax of function invocations is straight-forward. Note that the function is allowed to

be an arbitrary expression, which (as we'll see later) goes through the usual evaluation process. This,

in conjunction with the representation of closures, permits general functional programming. The

abstract structure is represented by the relations:

. Call(£)

E is a call

Degree (Call. 1).

• Rator (F, E)

F is the operator of E

Function (Rator. Call. Var).

. Rand (.V. E)

A' is the operand of E

Function (Rand, Call. expr).

4. Dynamic Structures

4.1 Closures

Recall that in statically scoped languages a function executes in its environment of definition rather

than its environment of call. Thus, when a function binding is made, it is necessary to record the

function's environment of definition. This is done by binding the function's name to a closure object.

A closure has three parts:

1. EP: environment part (environment of definition)

2. IP: instruction part (body of function)

3. FP: formal parameter

The abstract structure of closures is represented by the following relations:

• Closure (A)

K is a closure

Degree (Closure, 1).

. EP(C, A)

C is the environment part of K

Function (EP, Closure, Context).

. IP(fl, A')

B is instruction part of A

Function (IP. Closure, expr).

. FP(Ar, A')

N is formal parameter of A

Function (FP, Closure, string).

4.2 Dynamic Link

In addition to the closure, which determines the environment in which a function executes, it is also

necessary to determine the caller, within whom's execution the execution of the callee is dynamically

-1-

nested. This is called the dynamic link of the current context, and is represented by the relation:

. Caller [E, C, B. A)

E in C is caller of B in A

• Function (Caller, exprxContext, exprx Context).

Thus, the Caller relation refers back from the callee's expression/context (IP/EP) pair to the callers

expression/context pair.

Why do we not simply make the Caller relation a link from the callee's body to the caller node:

Caller (E, fl)? In the presence of recursive function invocations its possible for function bodies to be

multiply active, that is. there may be several evaluations of a function body in progress at the same time.

These different evaluations are distinguished only by the fact that they occur in different contexts

(which is guaranteed by our creating new context objects on block and function entry). Thus an

expression/context pair is necessary to uniquely identify a particular evaluation process. This will

become more apparent when we discuss the return process below, for it's necessary for a particular

function activation to return to the proper caller activation.

S. Evaluation

5.1 Invocation and Return

Evaluation of a function invocation begins with evaluation of the Rator and Rand components of

the Call node. Notice that by running the Rator through the usual evaluation process we permit it to

be any expression, including another function call. This permits functional programming, that is. the

use of higher-order functions. The analysis rule for Calls is:

*Eval (£, C), Call (E), Rator (F, E), Rand (X, E)

=- Eval (F, C). Eval (.V. C).

The synthesis rule expects a closure to be returned as the result of evaluating the Rator. The closure in

turn provides access to the body (IP), formal parameter (FP) and environment of definition (EP) of

the callee. Evaluation of the function's body B is initiated in the appropriate environment (A), which

results from binding the formal N to the value V of the actual, and linking the resulting context A to

the environment of definition D. It's also necessary to construct a dynamic link reflecting that E in

context C is the caller of B in context A. The required rule is:

Call (£), Rator (F, E), Rand {X, E), *Value (K, F, C), *Value (V, X, C),

Closure (A), EP [D, A), IP (B, K), FP (N, A"), *Avail (A)

=> Context [A), Nonlocals (£>, A), Binds (A, iV, V), Caller (£, C, 5, A), Eval (5. .4).

Eventually evaluation of the functions body completes. Then the dynamic link is used to transfer the

returned value from the function's body to the Call node, thus triggering resumption of evaluation in

the caller. The rule is:

"Caller (E, C, B, A), *Value (V, B, A)

==> Value (V, E, C).

Notice that if the Caller relation did not include the contexts C and B it would be possible for a value

to become attached to a function's body, and be returned to the wrong one of several waiting callers.

5.2 Function Definition

For recursion to work correctly, the environment of definition of a function must include the bind-

ing of the function name itself. Thus, the context referred to by the EP of the Closure is that same

Context that results from binding the function name to that Closure. We will have to ensure that the

Context constructed by a function definition node (FunDef) has this reflexive property.

Evaluation of a function definition block is similar to that of a let block, except that the bou nd value

(function body) is not evaluated at this time. Instead, a closure for the function is constructed, and the

function's name is bound to this closure. This binding forms the context for the evaluation of the

block's body. The analysis rule initiates evaluation of the block's body in this context:

*Eval (E, C). FunDef (E). FunName (F. E). FunFormal (A', E),

FunBody (B, E), FunScope (A', E). *Avail (£>, A')

Context (D), Nonlocals (C, D), Binds (D, F, A'),

Closure {K), EP (D, K), IP [B, K). FP (.V, K), Eval (X, D).

A synthesis rule waits for a value to arrive at the block's body, and attaches the value to the function

block itself (i.e., the value of the function definition block is the value of the block's body):

*FunDef (£), FunScope (X, E), *Value (V, X, D), Nonlocals (C, D)

=*> Value (V, E, C).

An script demonstrating these rules is listed in Appendix B.

6. Debugging

Suppose we have the following program:

show

lletK = 4

func fac n =

(if (n=0)

then {error} (1/0)

else (nxfac(n-l)))

fac K

When evaluation reaches the bottom of the recursion the zero division suspends execution. We would

like to be able to explore the context of the error as indicated in the following example:

evaluate

division be zero

context

fac (n = 0)

caller

fac (n = 1)

callee

fac (n = 0)

callee

fac (n = 1)

callee

fac (n = 2)

out_cantext

fac = ... function ...

out_cantext

K = 4

Notice that the callee command is not single-valued, since there may be several calls being evaluated at

one time. For example, in the program

func f x =

(f 1 + f 2)]

the two invocations of 'f could be evaluated in parallel. Thus there would be dynamic links from both

of these activations to the block body, and the callee command would not know which of these to pick.

The reader should consider possible solutions to this problem.

First we consider the evaluator modifications necessary to support these debugging facilities. To

accomplish our goal we need to record the name of a function along with its context. This is analogous

to storing the function's name in its activation record. Hence, we modify the Enter Body Rule to

record the function's name in the Name relation, which is defined:

. Name (M. C)

• M is the name of C

• Function (Name. Context, string).

The new Enter Body Rule is straight-forward:

Call (£•). Rator (F. E). Rand (A'. £). Var (F). Idem (A/. F), *Value (A'. F, C), *Value (V, X. C)

Closure (A'), EP (D, A). IP (B. A). FP(A\ A). *AvaiI (A)

=5. Context (.4), Nonlocal (D. A). Binds [A, N, V), Name (A/, A), Caller (£\ C, B. A),

Eval (B. A).

We alter the context command rule to notice when a variable binding is a result of function invocation,

so that we can show the name of the function:

*Command (context), CurrentContext (C), Binds (C, N, V), Name (M, C)

=•> Display (M "" (" "N "" = " " string-int | V] "")").

For function bindings, rather than trying to interpret the closure, we simply note the fact that the name

is bound to a function.

'Command (context). CurrentContext (C), Binds (C, N. K). Closure (A')

=* Display (N *" = ... function ...").

The reader can take it as an exercise to write the rule to unparse the function's body, should that be

desired.

Implementation of the caller command is simply a matter of following the dynamic link:

'Command (caller). CurrentContext (A), Caller (E. C, B, A)

=f CurrentContext (C). Command (context).

The rule for 'callee' is analogous.

What other debugging commands would be useful? It would be useful to exit from a function to its

caller by supplying a return value. Exercise for the reader: Define the 'exit v' command with this

meaning.

-9-

7. References

MacLennan83! MacLennan, B. J., A View of Object-Oriented Programming, Naval Postgraduate

School Computer Science Department Technical Report NPS52-83-001, February 1983.

[MacLennan84J MacLennan, B. J., The Four Forms of Q : Alternate Syntactic Forms for an Object-

Oriented Language, Naval Postgraduate School Computer Science Department Technical Report

NPS52-84-026, December 1984.

[MacLennan85a| MacLennan, B. J., A Simple Software Environment Based on Objects and Relations,

Proc. of ACM SIGPLAN 85 Conf. on Language Issues in Prog. Environments. June 25-28. 1985, and

Naval Postgraduate School Computer Science Department Technical Report NPS52-85-005. April

1985.

[MacLennan85b] MacLennan, B. J., Experience with Q : Implementation of a Prototype Programming

Environment Part 1, Naval Postgraduate School Computer Science Department Technical Report

NPS52-85-006, May 1985.

I MacLennan85cl MacLennan, B. J., Experience with f2 : Implementation of a Prototype Programming

Environment Part II, Naval Postgraduate School Computer Science Department Technical Report

NPS52-85-015, December 1985.

[MacLennan86j MacLennan, B. J., Experience with fi : Implementation of a Prototype Programming

Environment Part III. Naval Postgraduate School Computer Science Department Technical Report

NPS52-86-004, January 1986.

McArthur84J McArthur. Heinz M.. Design and Implementation of an Object-Oriented. Production-Rule

Interpreter, MS Thesis, Naval Postgraduate School Computer Science Department. December 1984.

Ufford85 Ufford, Robert P., The Design and Analysis of a Stylized Natural Grammar for an Objezt

Oriented Language (Omega), MS Thesis. Naval Postgraduate School Computer Science Department.

June 1985.

-10-

APPENDIX A: Prototype Programming Environment

The following is a loadable input file for the prototype programming environment described in this

report. It is accepted by the McArthur interpreter McArthur84,, which differs in a few details from

the Q notation used in this report (see [MacLennan84]). A transcript of a test execution of this

environment is shown in Appendix B.

PI-4

! A simple programming environment for an arithmetic

! expression language, including interpreter, unparser.

! syntax directed editor and debugger.

]

! Features included in the language:

! - Constants

' - Arithmetic Operations

! - Statically Nested Declarations

! - Comments

! - Conditional Expressions

! - Recursive Function Definition and Invocation

i

! PERVASIVE RELATIONS

! Evaluation

newrelation {"Eval"};

newrelation {"Check"}:

newrelation {"Value"};

newrelation {"Meaning"};

-1 1-

newrelation {"Explanation"};

! Contexts and Bindings

newrelation {"Context"};

newrelation {"Binds"};

newrelation {"Nonlocal"};

newrelation {"Looking"}.

! Unparsing

newrelation {"Unparse"}:

newrelation {"Image"};

newrelation {'Template"};

! Comments

newrelation {"Comment"}.

! Format Control Constants

define {root, "NL", "

"}:

define {root, 'Tabln", ""};

define {root, 'TabOut", ""};

! Logical Constants

define {root, "true", 1};

define {root, 'false". 0}.

•12-

COMMAND INTERPRETER

! Command Interpreter Relations

newrelation

newrelation

newrelation

newrelation

newrelation

newrelation

newrelation

newrelation

newrelation

newrelation

newrelation

newrelation

newrelation

"Command"};

"Argument"};

"Root"};

"Undef"};

"CurrentNode"};

"CurrentContext"};

"SuspendedEval"};

"Break"};

"EvalPending"}:

"ShowPending"};

"CommandPending"};

"Create Root"};

"Create Con text"}.

define {root. "ComlntRules". < <

! evaluate Command

if 'Command ("evaluate"), CurrentNode (E), CurrentContext (C)

- > Eval (E, C), EvalPending (E), CommandPending (E);

if 'Value (V. E. C), *EvalPending (E). 'CommandPending (-)

displayn {V}:

! Error Handler

if 'Break (M. E, C). 'CommandPending (-). 'EvalPending (R). 'SuspendedEval (-)

-> displayn {M}, SuspendedEval (R), CurrentNode (E), CurrentContext (C);

! resume Command

if 'Command ("resume"), SuspendedEval (Nil)

-> displayn {"no evaluation in progress"}

else if 'Command ("resume"), CurrentNode (E), CurrentContext (C), *SuspendedEval (R)

-> Eval (E, C), EvalPending (R), SuspendedEval (Nil);

! return Command

if 'Command ("val"), 'Argument (V), CurrentNode (E)

-> Value (V, E, C);

! show Command

if 'Command ("show"), CurrentNode (E)

-> Unparse (E), ShowPending (E), CommandPending (E);

if 'Image (S, E), 'ShowPending (E), 'CommandPending (—)

-> displayn {S};

! abort Command

if Command ("abort"), 'Eval (E, C) -> ;

if Command ("abort"), 'Value (V, E. C) -> ;

if Command ("abort"), 'Check (V, E, C) -> ;

if Command ("abort"), 'Nonlocal (C, D) -> ;

if Command ("abort"), 'Binds (D, N. V) -> ;

if 'Command ("abort"), "Eval (E, C). "Value (V, E, C), "Nonlocal (CD), "Binds (D, N. V),

-14-

*SuspendedEval (—), *CurrentContext (-)

-> CurrentContext (Nil). SuspendedEval (Nil), displayn {"aborted"};

! done Command

if 'Command ("done") -> displayn {"PI system stopped"};

-1 5-

! Syntax Directed Editing

if *Command ("delete"), CurrentNode (E), Undef (E)

-> displayn ("already deleted");

! begin Command

if 'Command ("begin"), *CurrentNode (-)

-> CreateRoot (newobj {}), CommandPending (Nil);

if "CreateRoot (E), *CommandPending (—)

-> Root (E). Undef (E). CurrentNode (E):

! root Command

if "Command ("root"), "CurrentNode (-), Root (E)

-> CurrentNode (E), Command ("show");

! Debugging Commands

! out_context Command

if "Command ("out_context"), "CurrentContext (D), Nonlocal (C. D)

-> CurrentContext (C). Command ("context")

else if "Command ("out_context")

-> displayn ("at outermost level");

! in_context Command

if "Command ("in_context"), "CurrentContext (C). Nonlocal (C, D)

-> CurrentContext (D). Command ("context")

else if "Command ("in^context")

•16-

-> displayn ("at innermost level");

! alter Command

if 'Command ("alter"), 'Argument (U), CurrentContext (C), *Binds (C, N, V)

-> Binds (C, N, U), Command ('Context")

else if 'Command ("alter"), 'Argument (-)

-> displayn ("no binding");

>>}.

act {ComlntRules}.

-17-

! COMMENTS

define {root, "RemRules", < <

! rem Command

if 'Command ("rem"), 'Argument (S), CurrentNode (E), "Comment (- , E)

-> Comment (S, E);

if 'Command ("rem"), 'Argument (—), CurrentNode (E), Comment (- , E)

-> displayn ("node already commented");

! delele_rem Command

if 'Command ("delete_rem"), CurrentNode (E), 'Comment (- , E)

-> displayn ("done");

if 'Command ("delete_rem"), CurrentNode (E), "Comment (- , E)

-> displayn ("no comment");

>>}.

act •{RemRules}.

! INCOMPLETE PROGRAM

! Tables

Explanation ("incomplete program", | "error", Oj).

define {root. "IncomProgRules", < <

! Evaluation

if 'Eval (E. C), Undef (E), 'CurrentNode (-)

-> Break ("Incomplete", E, C);

-18-

! Unparsing

if *Unparse (E), Undef (E)

-> Image ("< expr> ", E);

>>}.

act {IncomProgRules}.

-19-

! CONSTANT NODES

! Relations

newrelation {"Con"};

newrelation {"Litval"}.

! Functions

fn Id ixj: x.

! Tables

Meaning (Id, "lit").

Template (intjstr, 'lit").

define {root. "ConRules", < <

! Evaluation

if *Eval (e, c), Con (e), Litval (v, e), Meaning (f, 'lit")

-> Value (f [vj, e, c);

! Un parsing

if *Unparse (e), Con (e), Litval (v, e). Template (f, "lit"), Comment (s, e)

-> Image (f |v] + " {" - s •+ "}", e)

else if "Unparse (e), Con (e), Litval (v, e), Template (f, "lit")

-> Image (f [vj, e);

! # Command

if 'Command ("#"), 'Argument (V), Islnt [Vj, CurrentNode (E), *Undef (E)

-> Con (E), Litval (V. E);

-20-

if 'Command ("#"), 'Argument (V), CurrentNode (E), 'Undef (E)

-> displayn ("defined node");

! delete Command

if *Command ("delete"), CurrentNode (E), *Con (E), *Litval (V, E)

-> Undef (E), Command ("show");

>>}•

act {ConRules}.

-21-

! VARIABLE NODES

! Relations

newrelation {"Var"};

newrelation {"Ident"}.

define {root, "VarRules", < <

! Evaluation

if *Eval (E, C), Var (E), Ident (N, E)

-> Looking (N, C, E, C);

if "Looking (N, C, E, D), Binds (C, N, V)

-> Value (V, E. D)

else if "Looking (N, C, E, D), Nonlocal (Cprime, C)

-> Looking (N, Cprime. E, D)

else if "Looking (N, C. E, D). "CurrentNode (-), "CurrentContext (

-> Break ("Unbound: " + N, E, D);

! Unparsing

if "Unparse (E), Var (E), Ident (N, E), Comment (S, E)

-> Image (N - " {" -+ S + "}'*, E)

else if "Unparse (E), Var (E), Ident (N, E)

-> Image (N. E);

! var Command

if "Command ('Var"). "Argument (N). CurrentNode (E). "Undef (E)

-> Var (E), Ident (N, E);

-22-

! delete Command

if "Command ("delete"), CurrentNode (E). *Var (E), *Ident (N, E)

-> Undef (E), Command ("show");

act {VarRules}.

-23-

! APPLICATION NODES

! Relations

newrelation {"Appl"};

newrelation {"Op"};

newrelation {"Left"};

newrelation {"Right"};

newrelation {"CreateAppl"}.

! Evaluation Functions

fn Sum ix, yj: x + y;

fn Dif [x, yj: x - y;

fn Product [x, y]: x * y;

fn Quotient [x, yj:

if y = 0 -> | "error", lj

else x / y;

fn Equal [x, yj: if x = y -> true else false;

fn IsErrorcode [w]:

if "IsList [w] i w = Nil -> Nil

else first |w] = "error";

! Unparsing Functions

fn upSum ix. yj: "("-t- x+ "+ "+ y •+ ")";

fn upDif ix. yj: "(" - x - "- " - y + ")";

fn upProd |x, yj: "("- x - " x " - y •+ ")";

fn upQuot jx, yj: "(" + x - "/ "+ y -f ")»;

fn upEqua ix, yj: "(" -r x^ "= "+ y+ ")".

-24-

! Evaluation Tables

Meaning (Sum, "+ ");

Meaning (Dif, "-");

Meaning (Product, V);

Meaning (Quotient, "/");

Meaning (Equal, "= ").

! Unparsing Tables

Template (upSum, "-+ ");

Template (upDif, "-");

Template (upProd, "x");

Template (upQuot, "/");

Template (upEqua, "= ").

! Other Tables

Explanation ("division by zero", ["error", l]).

define {root. "ApplRules", < <

! Evaluation

if *Eval (e, c). Appl (e), Left (x, e), Right (y. e)

- • Eval (x. c). Eval (y. c);

if *Value (u, x. c), *Value (v, y, c), Appl (e), Op (n. e). Left (x, e), Right (y, e), Meaning (f, n)

- > Check (f u, v], e, c);

if *Check (w, e, c), "IsErrorcode ! w

- > Value (w, e, c):

if "Check (w, e, c). IsErrorcode wj, Explanation (s. w), *Current.\ode (q)

-25-

-> Break (s, e, c);

! Unparsing

if *Unparse (e), Appl (e), Left (x, e), Right (y, e)

-> Un parse (x), Unparse (y);

! Unparsing Comments on Applications

if Appl (E), Op (N, E), Left (X, E), Right (Y, E), *lmage (U, X). *lmage (V, Y), Comment (S, E)

-> Image (" {" + S + "}(" + U + N + V + ") ", E)

else if *Image (u. x), "Image (v, y), Appl (e), Op (n. e), Left (x, e), Right (y. e), Template (f, n)

-> Image (f [u, v], e);

! -+• , -, x , /, = Commands

if *Command (op), member jop, ;"+ ". "-", V. "/", "= "]], *CurrentNode (E), *Undef (E)

-> CommandPending (E). Create Appl (op. E, newobj {}, newobj {});

if "CreateAppl (op. E, X, Y). *CommandPending (E)

-> {Appl (E), Op (op. E), Left (X, E), Right (Y. E), Undef (X), Undef (Y), CurrentNode (X):

Command ('Ishow")};

! delete Command

if *Command ("delete"). CurrentNode (E), *Appl (E), *Op (N. E), *Left (X, E), Right (V, E)

-> Undef (E). Command ("show");

! in Command

if 'Command ("in"). *CurrentNode (E). Left (X. E)

-> CurrentNode (X), Command ('fchow");

-26-

! out Command

if 'Command ("out"), 'CurrentNode (X), Left (X. E)

-> CurrentNode (E), Command ("show"):

if 'Command ("out"), *CurrentNode (Y), Right (Y, E)

-> CurrentNode (E), Command ('Ishow");

! next Command

if "Command ("next"), *CurrentNode (X), Left (X, E), Right (Y, E)

-> CurrentNode (Y). Command ("show"):

! prev Command

if 'Command ("prev"), 'CurrentNode (Y), Right (Y, E). Left (X, E)

-> CurrentNode (X), Command ("show");

>>}.

act {ApplRules}.

-2<

BLOCK

Relations

newrelation {"Block"};

newrelation {"BndVar"};

newrelation {"BndVal"};

newrelation {"Body"};

newrelation {"CreateLet"}.

define {root. "BlockRules". < <

! Evaluation

if *Eval (E, C), Block (E), BndVal (X. E)

-> Eval (X. C):

if Block (E), BndVar (N, E), BndVal (X, E), Body (B, E), *Value (V, X, C), Comment (S, E)

-> CreateContext (newobj {}, N, V, C, B, S)

else if Block (E). BndVar (N, E), BndVal (X. E), Body (B. E), "Value (V, X, C)

-> CreateContext (newobj {}, N, V, C, B);

if 'CreateContext (D, N, V, C, B. S)

-> CreateContext (D. N. V. C. B), Comment (S. D);

if "CreateContext (D, N, V, C, B)

-> Context (D): Binds (D. N, V), Nonlocal (C, D). Eval (B, D);

if Block (E), Body (B, E), "Value (V, B, D), "Nonlocal (C. D), "Binds (D. N, W). 'Context (D)

-> Value (V. E. C);

! Unparsing

•28-

if 'Unparse (E), Block (E), BndVal (X. E), Body (B, E)

-> Unparse (X), Unparse (B);

! Unparsing comments on blocks

if Block (E), BndVar (N, E), BndVal (X, E), Body (B, E), "Image (U, X), *Image (V, B), Comment (S, E

-> Image (

Tabln + NL * "|let {" + S + "}"

- Tabln + NL + N + " = " + U

- NL + V + »J"

- TabOut - TabOut. E)

else if Block (E), BndVar (N, E), BndVal (X, E), Body (B. E), *Image (U. X). 'Image (V. B)

-> Image (Tabln + NL

~ "| let " + N + "= "+ U

- Tabln + NL + V + "]"

- TabOut - TabOut,

E);

! let Command

if 'Command ('let"). 'Argument (N), *CurrentNode (E), 'Undef (E)

-> CommandPending (E). CreateLet (N, E, newobj {}, newobj {});

if 'CreateLet (N. E. X. B). 'CommandPending (E)

-> {Block (E), BndVar (N, E), BndVal (X, E), Body (B. E).

Undef (X), Undef (B), CurrentNode (X);

Command (Miow")[;

! in Command

if 'Command ("in"). 'CurrentNode (E), BndVal (X, E)

-29-

-> CurrentNode (X), Command ('Ishow"):

! out Command

if 'Command ("out"), "CurrentNode (X), BndVal (X, E)

-> CurrentNode (E). Command ('fehow");

if 'Command ("out"). 'CurrentNode (B), Body (B, E)

-> CurrentNode (E), Command ("show");

! next Command

if 'Command ("next"), "CurrentNode (X), BndVal (X, E), Body (B, E)

-> CurrentNode (B). Command ("show");

! prev Command

if 'Command ("prev"). 'CurrentNode (B), Body (B, E), BndVal (X, E)

-> CurrentNode (X), Command (^how");

>>}.

act {BlockRules}.

-30-

CONDITIONAL EXPRESSION NODES

Relations

newrelation {"ConEx"};

newrelation {"Cond"};

newrelation {"Conseq"};

newrelation {"Alt"};

newrelation {"CreateConEx"}.

define {root. "ConExRules". < <:

! Evaluation

if *Eval (E, C), ConEx (E), Cond (B, E)

-> Eval (B, C);

if ConEx (E). Cond (B. E), Conseq (T, E), "Value (true, B, C)

-> Eval (T. C):

if ConEx (E). Cond (B. E), Alt (F. E). *Value (false. B. C)

- - Eval (F. C);

if ConEx (E). Conseq (T. E). *Value (V, T, C)

- > Value (V. E, C):

if ConEx (E). Alt (F, E), 'Value (V, F, C)

- • Value (V. E, C):

1 I nparsing

if *Unparse (E). ConEx (E). Cond (B, E), Conseq (T, E), Alt (F, E)

-> Unparse (B), Unparse (T). Unparse (F);

-u 1-

if ConEx (E), Cond (B, E), Conseq (T, E), Alt (F, E), *Image (U, B). "Image (V, T). "Image (W, F)

-> Image (Tabln + NL +

"(if "+ U + NL -

"then »+ V + NL +

"else " + W + ")" +

TabOut + NL, E);

! Editing

! if Comm and

if "Command ("if"), "CurrentNode (E), "Undef (E)

-> CommandPending (E), CreateConEx (E, newobj {}, newobj {}. newobj {});

if "CreateConEx (E, B, T, F). "CommandPending (E)

-> {ConEx (E), Cond (B, E), Conseq (T. E), Alt (F, E),

Undef (B), Undef (T), Undef (F). CurrentNode (B);

Command ('fehow")};

! in Command

if "Command ("in"), "CurrentNode (E), ConEx (E), Cond (B, E)

-> CurrentNode (B), Command ("show");

! out Command

if "Command ("out"), "CurrentNode (B), Cond (B, E), ConEx (E)

-> CurrentNode (E), Command ("show");

if "Command ("out"), "CurrentNode (T). Conseq (T, E). ConEx (E)

-> CurrentNode (E), Command ("show");

if "Command ("out"), "CurrentNode (F). Alt (F, E). ConEx (E)

-32-

-> CurrentNode (E), Command ('^how");

! next Command

if 'Command ("next"), 'CurrentNode (B), Cond (B, E), Conseq (T, E)

-> CurrentNode (T), Command ('^how'1);

if 'Command ("next"), 'CurrentNode (T), Conseq (T, E), Alt (F, E)

-> 'urrentNode (F), Command ("show");

! prev Command

if 'Command ("prev"), 'CurrentNode (F), Alt (F. E), Conseq (T, E)

-> CurrentNode (T), Command ("show");

if 'Command ("prev"), 'CurrentNode (T). Conseq (T, E), Cond (B, E)

-> CurrentNode (B). Command ("show");

>>}.

act (ConExRules}.

! FUNCTION DEFINITION AND INVOCATION

! Definition Abstract Structure

newrelation {"FunDef"};

newrelation {"FunName"};

newrelation {'FunFormal"};

newrelation {"FunBody"};

newrelation {'FunScope"};

! Invocation Abstract Structure

newrelation {"Call"};

newrelation {"Rator"};

newrelation {"Rand"};

! Runtime Relations

newrelation {'Closure"};

newrelation {'EP"};

newrelation {'IP"};

newrelation {'FP"};

newrelation {'Caller"};

newrelation {"Name"};

newrelation {"Argument2"};

newrelation {'CreateCall1'};

newrelation {'CreateFunDef"}:

newrelation {'Create Act Record"};

newrelation {"Create Fun Context"}.

define {root, "FunRuIes", < <

! FUNCTION INVOCATION

! Editing

! call Command

if *Command ("call"), *CurrentNode (E), *Undef (E)

-> CommandPending (E), CreateCall (newobj {}, newobj {}, E);

if *CreateCall (F, X, E), *CommandPending (E)

-> Call (E), Rator (F, E), Rand (X, E), Undef (F), Undef (X). CurrentNode (F);

! next Command

if "Command ("next"), "CurrentNode (F), Rator (F, E), Call (E), Rand (X, E)

-> CurrentNode (X), Command ('%how");

! Unparsing

if *Unparse (E), Call (E), Rator (F, E), Rand (X, E)

-> Unparse (F). Unparse (X);

if Call (E). Rator (F, E), Rand (X, E), *Image (U, F). *lmage (V, X)

-> Image (U - "" + V, E):

! Evaluation

! Evaluate Rator and Rand

if *Eval (E. C). Call (E). Rator (F, E). Rand (X. E)

- • Eval (F. C), Eval (X, C);

! Evaluate Body

if Call (E), Rator (F, E), Rand (X. E), Var (F). Ident (M. F),

•Value (K, F, C), *Value (V. X? C),

Closure (K). EP (D. K), IP (B, K), FP (N, K)

-> CreateActRecord (newobj {}, D, N, V, M, E, C, B);

if "CreateActRecord (A, D, N, V, M, E, C, B)

-> Context (A), Nonlocal (D, A), Binds (A, N, V),

Name (M, A), Caller (E, C, B. A), Eval (B, A);

! Return Value

if *Caller (E. C. B. A), "Value (V, B. A)

-> Value (V, E. C);

-36-

! FUNCTION DEFINITION

! Editing

! func Command

if 'Command (Tune"). *Argument (F), *Argument2 (N), *CurrentNode (E), "Undef (E)

-> CommandPending (E), CreateFunDef (newobj {}, newobj {}, F, N, E);

if "CreateFunDef (B, X, F, N, E), "CommandPending (E)

-> FunDef (E), FunName (F, E), FunFormal (N, E), FunBody (B, E), FunScope (X, E).

I'ndef (B). Lndef (X). CurrentNode (B):

! next Command

if "Command ("next"), "CurrentNode (B), FunBody (B, E), FunScope (X, E)

-> CurrentNode (X), Command ("show");

! in Command

if "Command ("in"), "CurrentNode (E), FunDef(E). FunBody (B, E)

-> CurrentNode (B). Command ("show");

! out Command

if "Command ("out"), "CurrentNode (B), FunBody (B, E)

- - CurrentNode (E), Command ('^how");

if "Command ("out"), "CurrentNode (X), FunScope (X, E)

-> CurrentNode (E), Command ('^how1');

! Un parsing

if "Unparse (E), FunDef (E), FunBody (B, E). FunScope (X. E)

-> Unparse (B), Unparse (X);

-37-

if FunDef (E), FunName (F, E), FunFormal (N, E), FunBody (B, E). FunScope (X, E).

*Image (U, B), "Image (V, X)

-> Image (Tabln + NL

+ 'Ifunc "+ F + ""+ N + "= "

+ Tabln + U +

- NL + V + "]"

+ TabOut + TabOut,

E);

! Evaluation

! Analysis

if *Eval (E, C), FunDef (E), FunName (F, E), FunFormal (N, E), FunBody (B, E), FunScope (X, E)

-> CreateFunContext (newobj {}, newobj {}, C, F, B, N, X);

if *CreateFunContext (D, K, C, F, B. N, X)

-> Context (D), Nonlocal (C, D). Binds (D, F, K),

Closure (K), EP (D, K), IP (B. K). FP (N, K),

Eval (X, D);

! Synthesis

if FunDef (E), FunScope (X. E), 'Value (V, X, D), Nonlocal (C, D)

-> Value (V, E, C);

! Debugging

! context Command

if ""Command ("context"). CurrentContext (C), Binds (C, N, K). Closure (K)

-> displayn {N -t- " = ... function ..."}

else if 'Command ("context"), CurrentContext (C), Binds (C, N. V). Name (M. C)

-> displayn {M - "("+ N + "= "- int_str:V| + ")"}

else if 'Command ("context"), CurrentContext (C), Binds (C, N, V), Comment (S, C)

-> displayn (N + "= »+ int_str [Vj + " {" + S * "}")

else if 'Command ("context"), CurrentContext (C), Binds (C, N, V)

-> displayn (N+ "= "- int_str(V])

else if 'Command ("context")

-> displayn ("no bindings");

! caller Command

if 'Command ("caller"), CurrentContext (A), Caller (E, C, B, A)

-> CurrentContext (C), Command ("context");

! callee Command

•>>}•

act {FunRules}.

-39-

! TEST DRIVER

! Relations

newrelation {'Script"};

newrelation {'Test"}.

! Monadic Command List

define {root, "MonadicCommands",

["#", 'Val", "let", 'Var", "alter", "rem"]}.

define {root, 'TestRules". < <

! Script Sequencer

if *Script (A, Nil). "Command (—), "CommandPending (—)

-> A ('Script completed")

else if "Script (A, L), "Command (-), "CommandPending (—), first [Lj = 'Tune"

-> { displayn {"..." - first j rest I Lj]

- ""+ first i rest [rest jLjj] + ""+ first jLj};

Command (first Lj), Argument (first [rest (Ljj), Argument2 (first [rest [rest [Lj]]);

Script (A, rest [rest [rest [L]]]) }

else if "Script (A. L). "Command (—), "CommandPending (-). member I first [Lj, MonadicCommands

-> { display {"... "};

display {first rest Ljj};

display n {" " + first [Lj};

Command (first j L,). Argument (first [rest [Ljj);

Script (A, rest rest jLjj) }

else if "Script (A. L). "Command (—). "CommandPending (-)

-40-

-> {displayn {" ... " + first jLj};

Command (first [L]);

Script (A, rest [L]) };

! Test Scripts

if *Test (A, 1) -> {Script {[

"begin", 'let", "K", ,l#", 4, "next", 'Tune1*, "fac", "n",

"if". <*= ", 'Var", "n", "next", "#", 0, "out", "next", "#", 1, "next",

"x". 'Var", "n", "next", 'tall", 'Var", "fac". "next",

"-". 'Var". "n". "next". "#". 1, 'Voot". "in", "next", "in", "next".

"call", 'Var". "fac", "next", "var", "K". 'Voot", "evaluate"

I);
A ('Test done");

}:

if *Test (A, 2) -> {Script {[

"in", "next", "in", "In", "next", 'yelete",

'Vem". "error", "/", "#", 1, "next", "#", 0. "root", "evaluate",

"tontext", 'taller", "callee", 'taller", "caller",

"out_context", "out_context", "done"

I;

A ('Test done");

>;

>> Y

act {TestRules}.

! Initialize Data Structures

CurrentNode (Nil).

-41-

CurrentContext (Nil).

SuspendedEval (Nil).

displayn {"PI-4 System loaded"}.

-42-

APPENDIX B: Transcript of Q Session

The following is a transcript of an ft session illustrating the operation of the prototype programming

environment shown in Appendix A. The assertion 'Script {testscript}' causes the commands in

testscript to be executed in order. The nth testscript is executed by 'Test{n}\ Each command is

printed on a separate line, followed by whatever output is generated by the programming environment.

This transcript was produced by the McArthur interpreter |McArthur84j.

% omega

OMEGA-1 11/30/84

Use Cntl-D or exit{} to quit.

For help, enter help{"?"}.

To report a bug, enter Bugs{}.

newrelation rule activated.

> do{"Pl4.rul"}.

PI-4 System loaded

OK

> {Test{l}; Test{2}}.

... begin

... K let

< expr>

...4 #

... next

< expr>

... fac n func

... if

< expr~

-43-

< expr>

... n var

... next

< expr>

... 0#

... out

(n= 0)

... next

< expr>

... 1 #

... next

< expr>

... x

< expr>

... n var

... next

< expr>

... call

... fac var

... next

< expr>

< expr>

... n var

... next

< expr>

... 1 #

... root

-44-

i let K = 4

func fac n =

(if (n= 0)

then 1

else (n x fac (n - 1)))

< expr> j

... in

•4

... next

func fac n =

(if (n = 0)

then 1

else (n x fac (n - 1)))

< expr>

... in

(if (n= 0)

then 1

else (n x fac (n - 1)))

... next

• expr>

... call

... fac var

... next

< expr -

... K var

... root

-4 5-

[let K = 4

func fac n =

(if(n= 0)

then 1

else (n x fac (n - 1))

fac K | |

... evaluate

24

... in

4

... next

func fac n =

(if(n= 0)

then 1

else (n x fac (n - 1)))

fac K ;

... in

(if (n = 0)

then 1

else (n x fac (n - 1)]

... in

(n= 0)

... next

1

... delete

-46-

< expr>

... error rem

... /

< expr>

- 1 #

... next

< expr>

... 0#

... root

let K = 4

func fac n =

(if (n= 0)

then {error} (1/0)

else (n x fac (n - 1))

fac K]]

... evaluate

division by zero

... context

fac (n = 0)

... caller

fac (n = 1)

... callee

fac (n = 0)

... caller

fac (n = 1)

... caller

fac (n = 2)

-4 7-

... out_context

fac = ... function .

... out_context

K = 4

... done

PI system stopped

Test done

> exit{}.

Goodbye.

-48-

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria. VA 22314 2

Dudley Knox Library
Code 0142
Naval Postgraduate School
Monterey. CA 93943 2

Office of Research Administration
Code 012
Naval Postgraduate School
Monterey, CA 93943 1

Chairman. Code 52
Department of Computer Science
Naval Postgraduate School
Monterey. CA 93943 40

Associate Professor Bruce J. MacLennan
Code 52ML
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943 12

Dr. Robert Graf ton
Code 433
Office of Naval Research
800 N. Quincy
Arlington, VA 22217-5000 1

Dr. David Mizell
Office of Naval Research
1030 East Green Street
Pasadena. CA 91106 1

Dr. Stephen Squires
DARPA
Information Processing Techniques Office
1400 Wilson Boulevard
Arlington. VA 22209 I

Professor Jack M. W'ozencraft. 62 Wz
Department of Electrical and Comp. Engr.
Naval Postgraduate School
Monterey. CA 93943 1

Professor Rudolf Bayer
lnstitul fur Informatik
Technische I'niversitat
Postfach 2024 20
D-8000 Munchen 2
West Germany 1

-49-

Dr. Robert M. Balzer
USC Information Sciences Inst.
4676 Admiralty Way
Suite 10001
Marina del Rey, CA 90291

Mr. Ronald E. Joy
Honeywell, Inc.
Computer Sciences Center
10701 Lyndale Avenue South
Bloomington, MI 55402

Mr. Ron Laborde
INMOS
Whitefriars
Lewins Mead
Bristol
Great Britain

Mr. Lynwood Sutton
Code 424. Building 600
Naval Ocean Systems Center
San Diego, CA 92152

Mr. Jeffrey Dean
Advanced Information and Decision Systems
201 San Antonio Circle. Suite 286
Mountain View, CA 94040

Mr. Jack Fried
Mail Station D01/31T
Grumman Aerospace Corporation
Bethpage. NY 11714

Mr. Dennis Hall
New York Videotext
104 Fifth Avenue, Second Floor
New York. NY 10011

Professor S. Ceri
Laboratorio di Calcolatori
Departimento di Elettronica
Politecnico di Milano
201SS - Milano
Italy-

Mr A. Dain Samples
Computer Science Division - EEC'S
University of California at Berkeley
Berkeley. CA 94720

Antonio Corradi
Dipartimento di Elettronica
Informatica e Sistemistica

Universita Degli Studi di Bologna
Viale Risorgimento, 2

-50-

Bologna
Italy

Dr. Peter J. Welcher
Mathematics Dept., Stop 9E
U.S. Naval Academy
Annapolis, MD 21402

Dr. John Goodenough
Wang Institute
Tyng Road
Tyngsboro, MA 01879

Professor Richard N. Taylor
Computer Science Department
University of California at Irvine
Irvine, CA 92717

Dr. Mayer Schwartz
Computer Research Laboratory
MS 50-662
Tektronix, Inc.
Post Office Box 500
Beaverton, OR 97077

Professor Lori A. Clarke
Computer and Information Sciences Department
LGRES ROOM A305
University of Massachusetts
Amherst, MA 01003

Professor Peter Henderson
Department of Computer Science
SUNY at Stony Brook
Stony Brook, NY 11794

Dr. Mark Moriconi
SRI International
333 Ravenswood Avenue
Manlo Park. CA 95025

Professor William Waite
Department of Electrical and Computer Engineering
The University of Colorado
Campus Box 425
Boulder. CO 80309-0425

Professor Mary Shaw
Software Engineering Institute
Carnegie-Mellon University
Pittsburgh. PA 15213

Dr. Warren Teitelman
Engineering /Software
Sun Microsystems Federal, Inc.
2550 Garcia Avenue

-51-

Mountain View. CA 94031

Prof. Raghu Ramakrishnan
Univ. of Texas at Austin
Dept. of Computer Science
Austin, TX 79712

-52-

